Extended High-frequency Cues to Phoneme

Recognition: Insights from ASR

Paper #1125

Zhe-chen Guo & Bharath Chandrasekaran

Northwestern

Department of Communication Sciences and Disorders, Northwestern University

1. Introduction

- Extended high frequencies (EHFs; >8 kHz) are often considered negligible for speech perception, excluded from audiometry and most ASR systems.
- EHF hearing improves speech perception in noise and predicts subjective hearing difficulties better than conventional audiograms (.25–8 kHz) [1–4].
- EHF-audibility: benefit arises directly from EHFs providing cues to phoneme recognition
 - Alternatively, it may indirectly reflect broader cochlear health [5-7].
- Evidence is limited: 1) unnatural stimuli (e.g., complete removal of lower frequencies) [8, 9]; 2) EHF effects modulated by spatial factors [10, 11].
- decoding **ASR** models phonemes **cochleagrams**—a biologically-relevant speech representation—may provide useful insight [12].
- Broadband vs. low-pass filtered (at 8 and 6 kHz) speech in quiet and adverse spatial conditions.
- Do EHFs improve phoneme recognition? If yes, in what conditions? Are consonants more affected than vowels by lack of EHFs?

2. Experiment

- 13,636 recordings from British English speakers of VCTK corpus [13] (80% train, 10% val, 10% test).
- Target speech in quiet and synthesized spatial speech mixtures using head-related transfer functions [14] with separation $\theta = [\pm 20^{\circ}, \pm 45^{\circ}]$ $\pm 60^{\circ}$, $\pm 120^{\circ}$] and target-to-masker ratio (TMR) = [+3, 0, -3, -6, -9, -12 dB SPL]

Speech at both ears was broadband or low-pass filtered at 8 or 6 kHz and converted to cochleagrams.

Analysis of test-set results: 1) accuracy (broadband VS. LP-8kHz/6kHz); 2) posterior probability of each error type for each phoneme

3. Results

High-frequency cues above 8 and 6 kHz improved phoneme recognition in the presence of a masker, but not in quiet.

High-frequency cues reduced phoneme recognition thresholds, especially when recognition was difficult and when target-masker separation was large.

Removal of EHFs increased substitution errors more for consonants than vowels. No sig. difference in deletion and insertion errors.

4. Discussion

- Results from masked conditions suggested that EHFs provide direct cues to phonemes.
 - May partly explain the correlation between hearing sensitivity and subjective hearing difficulties [2].
- Lack of EHF benefit in quiet highlights the need to also consider suboptimal listening situations.
- Removing EHFs affected /f, v/ the most, which have flat spectra with peaks close to 8 kHz [15, 16]
 - Also aligned with results from humans [3]
- Findings suggest reconsideration of EHFs in audiometric practice and ASR designs for spatially complex auditory environments.
- Future work: experiment with state-of-the-art ASR models (e.g., wav2vec 2.0) including EHFs.
 - Challenge: most benchmark datasets (e.g., LibriSpeech) use a 16-kHz sampling rate.

