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qSlow temporal modulation (speech envelope) is critical for perceiving vowels and consonants [1].
qNeurons in the auditory cortex phase-lock to changes in the speech envelope [2–4].
qThe neural encoding of speech sounds can be assessed by comparing neural (e.g., EEG) and
envelope oscillations [5–8].
• Often using linear decoders such as multivariate temporal response functions (mTRF) [7].
• However, the correlation is usually low (< 0.1).

qRecent work has shown success in using non-linear decoders such as long short-term memory
deep neural networks (LSTMs)
• For classification (e.g., whether the EEG matches the envelope: [9]) and regression (e.g.,
decoding envelopes of short, isolated sentences: [10]) problems.

Research questions

1. Introduction
EEG Dataset
qMastoid-referenced EEG recorded at 62
electrodes from Reetzke et al. [11].

q 15 native English speakers listening
attentively to an audiobook.

q 300-ms segments of EEG and speech
envelope from each phoneme onset

q 37 phonemes (21,547 tokens in total)

• 323,205 data points (21,547 × 15 subjects)

2. Brain-to-speech decoder

q For all phonemes, the LSTM model (mean r = 0.20)
significantly (p < 0.05) outperformed the mTRF
(mean r = 0.06).

q Reconstruction accuracy was equally high and much
less variable across subjects for the LSTM model.
• The mTRF could reconstruct envelopes with
accuracy similar to that of the LSTM, but only for
certain subjects (e.g., Subject 3).

• Decoding performance of linear approaches can
be highly subject-dependent.

q Decoding accuracy of the LSTM model was lower for
high vowels compared with other vowels and nasals
compared with other consonants.
• Possibly due to their lower amplitude.

q The findings demonstrate the potential of non-linear
approaches to investigating the neural representation
of speech envelopes and developing brain-computer
interfaces.

q Future research will experiment with frequency-
domain features (e.g., EEG spectrograms) and
different model architectures.

4. Discussion
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Envelope Reconstruction
qPerformed subject-dependent decoding for each phoneme using 10-fold
cross-validation.

qmTRF
• Backward model using MATLAB mTRF toolbox [7]
• Lags: 0 to 300 ms; tuned ridge parameter with 10% of training data

qLSTM

• Trained for 150 epochs with LSTM hidden size = 256, learning rate =
10-4, batch size = 16, Adam optimizer, and MSE loss

qPearson correlation (r) between target and reconstructed envelopes
served as the metric of reconstruction accuracy.
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1. Does an LSTM model outperform the mTRF in decoding speech envelopes from natural running speech?
2. To what extent is the decoding performance of the LSTM and mTRF models consistent across subjects
(listeners) and across phoneme categories?
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Fig 1. Average Pearson correlations (r) between target and reconstructed envelopes by phoneme and model (LSTM vs. mTRF) with bars representing 95% confidence intervals.

3. Results

Fig 2. Average r values of the three most frequent vowels (/ʌ, i, ɪ/) and consonants (/t, s, n/) by subject and model. Fig 3. Average target and reconstructed envelopes of /ʌ, i, ɪ, t, s, n/ for Subjects 1 and 3. 
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